Biopsia liquida e neoplasie ematologiche: disegnando il futuro Sessione 6: Le tecnologie di ultima generazione

Le sfide dell'analisi informatica di CNAs, SNVs e single-cell data

Andrea Poletti, PhD IRCCS Azienda Ospedaliero Universitaria di Bologna S. Orsola University of Bologna, DIMEC

Disclosures of Name Surname

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other

Convegno Regionale SIES Delegazione Emilia Romagna BIODSIA IIQUIDA: CHE TRAFFICO IN PERIFERIA!

Analysis of liquid-biopsy data: a multiple biomarkers dynamic scenario

Watanabe, K., et al. Journal of Human Genetics (2021)

Convegno Regionale SIES Delegazione Emilia Romagna BIODSIA IIQUICIA: CHE TRAFFICO IN PERIFERIA!

28 Febbraio – 1 Marzo 2025

Bologna

The technological (r)evolution of Liquid Biopsy analysis methods

Moser, T., et al. Trends in Genetics (2023)

SECOND generation Liquid Biopsy methods

Feature: genomic (mutations) Strength: good LOD (10^-4) Limit: requires prior information (population and patient)

Newman, A.M., et al. *Nature medicine* (2014)

Convegno Regionale SIES Delegazione Emilia Romagna BIODSIA IIQUICIA: CHE TRAFFICO IN PERIFERIA! Feature: genomic (mutations) Strength: excellent LOD (10^-6) Limit: requires very specific prior information (population and patient)

Kurtz, D. et al. Nature biotechnology 39.12 (2021)

IchorCNA

2) Ultra low-pass whole-genome sequencing (0.1x)

Feature: genomic (CNA) Strength: cheap, ULP-WGS ≥0.1X Limit: LOD ≥ 3%, probabilistic results

Adalsteinsson, A., et al. Nature communications (2017)

THIRD generation Liquid Biopsy methods

Features: Epigenomic (methylation, fragmentomic, etc.)

Strengths:

- **Deconvolution** of cfDNA data to obtain <u>cell-of-origin (COO)</u>.
- **High-dimensional**, different features in a single assay.

Limits:

- Standardization challenges
- COO reference atlases are still evolving.
- Biological confounders: comorbidities, inflammation, lifestyle, etc... causing cfDNA release in blood.

Multiple epigenetic features of cfDNA

Stanley, Kate E., et al. Nature Communications (2024)

econvolutior

FOURTH generation Liquid Biopsy methods

Chen, G., et al. British journal of cancer (2023)

٠

DATA SCIENCE : AI, Machine Learning, Deep-learning

AI definition:

"Computer systems able to perform tasks normally requiring human intelligence, such as visual perception, speech recognition, <u>decision-making</u>, and translation between languages." (Source: Oxford Languages)

Data science:

the study of data to extract <u>meaningful insights</u>.

Convegno Regionale SIES Delegazione Emilia Romagna BIODSIA IIQUICIA: CHE TRAFFICO IN PERIFERIA!

The CHALLENGES of the fourth-gen LB bioinformatic analyses

Moser, T., et al. *Trends in Genetics* (2023)

- In liquid biopsy, we collect <u>many features (mutations, CNA, methylation, fragment</u> lengths, etc.) from <u>many analytes (like CTCs, exosomes, metabolites)</u>.
- Each signal is a **small piece of the overall puzzle**.
- **Challenge 1**: turn scattered data points ("raw materials") into useful information ("meaningful clues"). We do this by extracting, combining, and encoding features that can <u>capture underlying biology</u> (e.g., nucleosome positioning or methylation blocks).

Esfahani, M., et al. Nature biotechnology (2022)

EPIC-seq method

Introduced new fragmentomic features!

- promoter fragmentation entropy (PFE)
- <u>nucleosome-depleted regions (NDR)</u>

Strongly correlated to gene-expression and clinical outcome

Convegno Regionale SIES Delegazione Emilia Romagna BIODSIA IIQUICIA: CHE TRAFFICO IN PERIFERIA!

"Distilling the Essentials from Thousands of Candidates"

- After generating features, we face a problem called the "<u>curse of dimensionality"</u>: thousands of potential markers, but relatively smaller patient cohorts.
- **Challenge 2**: <u>Filtering out uninformative or redundant</u> <u>features</u> and keeping only those with real predictive power.
- Techniques: Common methods include statistical tests (correlation, linear regression) with regularization approaches (LASSO, ridge). These help <u>selecting the most discriminative signals.</u>

Luo, H., et al. «ctDNA methylation enable early diagnosis, prognosis prediction, and screening for colorectal cancer» Science transl. Med. (2020)

Convegno Regionale SIES Delegazione Emilia Romagna BIODSIA IIQUICIA: CHE TRAFFICO IN PERIFERIA!

Choosing the Right Engine to Drive Accurate Predictions

- Once we've defined our feature set, we pick a model: <u>simple and explainable</u> methods (e.g., logistic regression) or <u>complex "black-box"</u> methods (e.g. neural networks).
- **Challenge 3**: <u>Balancing explainability and complexity</u>. Complex AI and *deep-learning* models can uncover intricate patterns but are much harder to explain.
- <u>Clinicians often prefer transparent models</u> if accuracy is not severely compromised.
- No Universal Rule: There's no single model optimal for all problems -> test various models, experimentation is key to <u>find the one that performs best</u>!

Quality control

4. Unique mapping

3.Deduplication

Copy Number Alterations (CNA)

Obtain the number of reads in

and the second s

Healthy

Tumor detection

Tissue-of-origins

Kidney Bladder Prostate

Tumor

2) Calculate the CNA ratio

③ Normalize by CBS

50k bins

2.Mapping to hg19

Han, Yang, et al. "Enhanced detection of genitourinary cancers using fragmentation and copy number profiles obtained from urinary cfDNA" Clinical Chemistry (2021).

Multiple models involved

- 1. Logistic Regression (Logistic)
- 2. Logistic Regression multinomial (LRmul)
- 3. Support Vector Machine (SVM)
- 4. Support Vector Machine con kernel lineare (SVM_line)
- 5. Ridge Regression (Ridge)

Ensemble Approach: Each algorithm independently analyzes data and produces predictions. Then the <u>outputs of these five models</u> <u>are consolidated</u> using a probability-averaging strategy (softmax) which picks the <u>prediction with the highest probability</u>.

Convegno Regionale SIES Delegazione Emilia Romagna BIODSIA IIQUICIA: CHE TRAFFICO IN PERIFERIA!

LRmul

SVM_line

GUIDER

SVM

Library

Construction

Fragmentation Profiles (FP)

Obtain the insert size in 50k bins

WWWWWWWWWWWWWWWWWWWWWW

Logistic

Ridge

(2) Calculate the FP ratio

③ Normalize by z-score

000 0000

manana

1000

0000000

Feature extraction

Machine learning

I. Feature selection

2. Model training

by GradientBoosting

with 5 basic classifiers

Final decision generated

by softmax according to basic classifiers

"From Proof-of-Concept to Clinical applications"

- Ultimately, the goal is to detect disease early, classify tumor, and predict relapse or response. This <u>requires rigorous validation</u> at every step.
- **Challenge**: Avoid **OVERFITTING**. Or more simply: ensuring that the <u>model generalizes well</u> beyond the initial <u>training cohort.</u>
- A machine-learning approach must undergo <u>strict validation of</u> <u>performances</u> (sensitivity, specificity, ROC) on a <u>test cohort</u> before clinical deployment.
- Validation can be <u>external</u> (best) or <u>internal</u> (more feasible)

Conclusions

Convegno Regionale SIES Delegazione Emilia Romagna BIODSIA IIQUICIA: CHE TRAFFICO IN PERIFERIA!

Thank you for the attention!

IRCCS Istituto di Ricovero e Cura a Carattere Scientifico

ALMA MATER STUDIORUM Università di Bologna

Multiple Myeloma Research Unit

Prof. Elena Zamagni

Bioinformatic Team

Andrea Poletti Vincenza Solli Gaia Mazzocchetti Viola Meixian Vuong Molecular Biology Lab Carolina Terragna Marina Martello Enrica Borsi Silvia Armuzzi Ilaria Vigliotta Barbara Taurisano Ignazia Pistis

Alessia Croce

Clinical Research Unit Paola Tacchetti Lucia Pantani Katia Mancuso Serena Rocchi Ilaria Rizzello

Convegno Regionale SIES Delegazione Emilia Romagna BIODSIA IIQUICIA: CHE TRAFFICO IN PERIFERIA!